Fractals, Multi-Fractals, Psuedo-Fractals and Non-Fractals in Energy Spectral Techniques

Francis Vaughan

(Archimedes Consulting)

EAGE Workshop on Non Seismic Methods Manama, Bahrain, 2008

Outline

- Fractals
- Fractal Processes
- Energy Spectrum Analysis
- Fractal and Non-Fractal Assumptions
- Window Size
- Noise
- MWT process
- Validation
- Conclusions

Acknowlegements

- Valuable input from:
 - Sam Yates
 - Matthew Roughan
 - Stephen Markam
- Thanks to:
 - Scott Barnden
 - Craig Patten

Geometric Fractals

- Self similar geometry
- Repeated generation algorithm
- Non Integer Dimension

Koch Snowflake. 1904 D = 1.26

Fractals

■ The Fractal Geometry of Nature Benoit B. Mandelbrot

Scale Invariance

Scale Invariance 2

Craters

Craters - Fractal dimension

■ The number N(>d) of impact craters having a diameter larger than d

$$N(>d) \sim d^{-D}$$

- D is the fractal dimension
 - very close to 2.0 for the Moon,
 Mars and Venus.
 - The size of asteroids dimension D around 2.1.

Crustal Dynamics

Turbulence

Turbulence has fractal properties

Important for volcanic and magma flows

Susceptibility contrasts may follow

Image: © University Corporation for Atmospheric Research (UCAR)

Scale Limits

- Physical processes only work within given limits
- **■** Turbulence
 - Reynolds number
- **■** Tectonics
 - Plastic flow limits
 - Plate thickness

Anisotropy

- Scaling different in each dimension
- Different process in different dimensions
 - Topography
 - Sedimentary
- Non Fractal
 - Periodic forces (e.g. Milanchovitch Cycle)
 - Salt Tectonics
 - Non turbulent
 - Very low Reynolds Number

Anisotropy 2

- Non-Linked
- Time varying
 - Large volume simple flow versus
 - Compound flows

Scale

- Real processes only occur across a limited range of scales
- May be fractal within part of that range
- Other (possibly fractal) processes occur at other scales
- Processes may overlap in scale

Sampling

- Potential fields surveys provide limits to scales
- Impossible to see process with scale smaller than flight line spacing on gridded data
- Sub-sampling adds minimal information
- Gridding algorithms contribute in complex ways

Limits

Non and Psuedo Fractals

- Fractal → Power law decay
- Power law → Fractal

- "a power-law decay is not sufficient to identify a fractal distribution." Hough S.E. 1989.
 - Piecewise set of Gaussian processes yields power law

Non and Psuedo 2

- Katsev and L'Heureux 2003
 - Samples less than 500 elements not statistically valid for extracting fractal parameters
 - Spikes or discontinuities can cause false fractal dimension from fractal detection.
- Fitting a line to log/log data is not assumption free
 - Implicit model and fixing of invisible parameters

Models

- Desire for models that capture difficult phenomena
- Potential Fields
 - Simple Block Model
 - Simple Statistical Model
 - No to few parameters
 - Fractal one (maybe) powerful parameter (more if anisotroptic)
- $\blacksquare M(p_1,p_2) \alpha R(p_1,p_2,p_3,...,p_{big})$

$$- D_f = F(p_1, p_2, p_3, \dots, p_{big}) \qquad Fractal$$

Mathematical Models

- Desire for models that have tractable mathematics
 - Spector and Grant linear single parameter
 - Fractal power law single parameter
 - Euler deconvolution assumption of single source per window
- All:
 - Simple
 - Wrong
 - Useful

Spector and Grant Model

- Magnetic interface is modeled by a statistical layer of magnetized vertical blocks.
- Horizon has correlation of blocks

$$E(\rho) \square e^{-2h\square\rho} (1-e^{-t\square\rho})^2 \square S(\rho)$$

h = depth to top

t = thickness

Single Prism Model TOTAL MAGNETIC INTENSITY h = 3.2km> Log Radial Spectrum h = 3.2km200gc **Radial Frequency**

Multiple Prisms and Layers

Multiple Prisms Model: Energy Spectrum

General Fractal Model

Bad and Good Science

- Model A has behavior X
- System has behavior X
- System is of form Model A

Common and very bad science

Good Science

- Have set of Models, A,B,C
 - Behaviors, X,Y,Z

- System has behavior X
- System may be of form A, is not of form B or C
- Falsifiable Hypothesis
 - You might even be right, but have no reason to know you are right.

Source Ambiguity

- Quarta, Fedi, de Santis, 2000
 - β_f may depend upon ratio of horizontal extent of source and sampling interval not fractal
 - Tests basic assumptions of fractal distribution
 - Synthetic models exhibited good match to fractal
 - Real data failed fractal test
 - Must constrain scale of fractal range
 - Extension over too large a range incorrect

Scale Ranges for ESA Fractals

- Lovejoy, Pecknold, Schertzer 2001
- Anisotropic model
- Slopes invariant on anisotropy
- Scales:
 - Core dominated
 - Curie Isotherm dominated
 - Small Spector and Grant models

Sedimentary Layers

History of layer

Existing topography
Probably anisotroic fractal

Sedimentary process
Some thickness of material

Possible new weathering of new surface Maybe new fractal process

Horizon is difference of 2 (maybe fractal) topographies

Thin, maybe disconnected, lenticualr bodies.

Thin body model applies

Estimates depth well

Spector and Grant + error within body

Pilkington, Gregotski, Todeoschuck

- Isotropic model of basement susceptibility distribution.
- Canadian Shield magnetic survey
 - Athabasca basin
 - Measured β = 3
 - Correct for f⁻³
 - Downward continue until spectra flat
 - Yields correct depth estimate 1700m
- Lack of fractal correction (equivalent to Spector and Grant method)
 - Overestimates depth 2400m

Athabasca Basin

Data Quality

Second Vertical Derivative

Two sample areas

- Middle of basin, depth 1500m
- Exposed shield, depth = 0
- Flight height of 300m
- Exposed shield invalid test
 - Flight line spacing 812m
 - Over twice depth to source
 - However fractal analysis can extract depth
- Test can MWT estimate correct depth?

Automatic MWT of Basin

Conclusions

- Validates isotropic fractal model
 - Small window size in geology smaller than dominated by Curie Isotherm models as Spector and Grant
 - So long as window size is small enough to avoid deep bodies
 - Too large window overestimates depth.
 - Contaminated by deeper bodies

Conculsions 2

- MWT methodology avoids difficulties
- Estimates correct depth even in areas where previous use of poor window sizes failed
- Fractals remain an important model
 - Estimates of fractal dimensions should improve ESA methods
 - But must include anisotropy to work
 - Supporting evidence for estimating β needed

